

Lessons Learned from Teaching a Maritime Industrial Control Systems Cybersecurity Course

Brien Croteau, USNA, Cyber Science IEEE LCN - MarCaS, 05 Oct 2023

Link to materials: https://github.com/brienc23/ MICS Course Materials

My Background

24-year Active Duty Naval Officer, EE Ph.D. Assistant Professor, USNA Cyber Science Department Military Deputy for the Dean of Math and Science

Research in Cyber-Physical Systems (CPS) Security: Detection of malicious sensors using side-channel power analysis, Alternate actuation paths, Actuation limits, Industrial Control Systems (ICS) security, Maritime Hull, Mechanical, & Electrical (HM&E) security

About the U.S. Naval Academy

- Located in Annapolis, MD
- One of Five Federal Military Academies
 - feeding the U. S. Navy and Marine Corps
- Approx. 4500 students and 600 Faculty
 - \circ 300 civilian, 300 military
- 26 Majors
 - 65% graduates must be STEM majors

Cyber Operations: Interdisciplinary Major

increase its supply of newly minted officers who have a solid

https://ieeexplore.ieee.org/a bstract/document/8677342

My umbrella term of choice = CPS

Cyber-Physical Systems

Other Monikers:

OT = Operational Technology

ICS = Industrial Control Systems

Industry 4.0, IIoT

SCADA

Why should you care about this?

To allow <u>undergraduate students</u> to learn and gain hands-on experience with Programmable Logic Controllers (PLC) and then investigate the unique cybersecurity challenges in CPS.

To provide a relevant application focus, the subdomain of Maritime Industrial Control Systems Cybersecurity was chosen since most of our graduates will go on to serve on ships and submarines.

Course Outline

- Course Introduction
- Maritime Systems
 - Propulsion
 - Electrical
 - Auxiliaries
 - Bridge
- Industrial Control Systems
 - PLCs
 - Ladder Logic
 - Modbus
 - Attacking (and Defending)
- Final Project
 - YP703 Alarms and Monitoring

Week	Lecture	Lab	
1	Class Introduction	Intro Video	
2	Ship Propulsion Systems	VER Install & Startup	
3	Ship Electrical Systems	VER Power Plant	
4	Ship Water Systems	VER Aux Systems	
5	Ship Nav and Bridge Systems	Bridge Cmd Install	
6	Intro to PLCs	Exam 1	
7	Intro to Ladder Logic	CCW Instal, LL 1	
8	Adv. Ladder Logic	More LL	
9	ICS Protocols (part 1)	Modbus RS-232	
10	ICS Protocols (part 2)	Modbus RS-485/TCP	
11	Attacking ICS (part 1)	Attacking ICS	
12	Attacking ICS (part 2)	Exam #2	
13	YP703 Systems Overview	YP Field Trip	
14	YP Project Intro	HILICS Install	
15	YP Project work	YP Status Update	
16	YP Project Work	Project Demo	

7

Marine Systems Lectures - Propulsion

Propulsion Types

- Manual
- Sails
- Paddlewheel
- Pump-Jet
- Propellers
- Power Generation
 - o Steam
 - Diesel
 - Gas Turbine
 - LNG
 - Fuel Cell
- Typical Ship Configurations

Paddlewheel / Caterpillar

The paddle wheel is a large steel framework wheel. The outer edge of the wheel is fitted with numerous, regularly spaced paddle blades (called floats or buckets). The bottom guarter or so of the wheel travels under water. Cat != MHD

The gas turbine is most familiar to people in it's application to the aerospace industry. Low weight to power ratio, compactness, and a reliable simple design are the major advantages. Because of their poor thermal efficiency at low power (cruising) output, it is common for ships using them to have diesel engines for cruising, with gas turbines reserved for when higher speeds are needed. More common in warships

Early Steam Engines

Early marine steam engines came about around 1800

and started with reciprocating pistons and were

A compound engine is a steam engine that operates cylinders through more than one stage, at different pressure levels. Compound engines were a method of improving efficiency.

riod cutaway diagram of a triple-expans steam engine installation, circa 1918. This particular diagram illustrates possible engin cutoff locations, after the Lusitania disaster and others made it clear that this was an important safety feature

steeple

arasshopp

Cutaway of a Typical Ship Engine Room

https://www.marineinsight.com/main-engine/ exhaust-gas-system-of-main-engine-on-ship

Marine Systems Lectures - Electrical

• Components

- Generators
- Switchboards
- Bus Bars
- Circuit Breakers
- Transformers
- Others
 - Switches
 - Fuses
 - Instrument
 - Motors, etc.
- Three-Phase Power
- Electrical Safety
- Inside Switch Boards
- Distribution

Generators

Shipboard power is generated using a prime mover and an alternator working together. International maritime regulations (e.g. SOLAS), require at least two generators for a ship's main electrical power system. AC power is preferred over DC as it gives more power for the same size. Three phases is preferred over single phase as provides more overall power and in the event of failure of one phase, other 2 can still work.

Busbars (or Bus Bars)

In electric power distribution, a busbar is a metallic strip or bar, typically housed inside switchgear, panel boards, and busway enclosures for local high current power distribution. They are generally uninsulated, and have sufficient stiffness to be supported in air by insulated pillars. These features allow sufficient cooling of the conductors, and the ability to tap in at various points without creating a new joint.

Electrical Distribution - Example 2

Marine Systems Lectures - Auxiliary (Water Systems)

- Ballast
- Cooling
- Fire Mains
- Potable Water
 - Evaporator
 - $\circ \quad \text{Reverse Osmosis} \quad$
- Wastewater
 - Greywater
 - Blackwater

Ballast is used in ships to provide moment to resist the lateral forces on the hull. Insufficiently ballasted boats tend to tip or heel excessively in high winds. Too much heel may result in the vessel capsizing. If a sailing vessel needs to voyage without cargo, then ballast of little or no value will be loaded to keep the vessel upright. Some or all of this ballast will then be discarded when cargo is loaded. The advantage of water ballast is that the tanks can be emptied, reducing draft or the weight of the boat (e.g. for transport on ground) and water added back in (in small boats, simply by opening up the valves and letting the water float is launched at is launched or cargo unloaded.

Potable Water

https://www.youtube.com/watch?v=8k56ffiNJ8M

Freshwater may be obtained from shore mains supply or water barge. Alternatively, the majority of ships employ an <u>evaporator</u> system that uses distillation, or a pressurised filtering system which uses <u>reverse osmosis</u> to convert seawater into potable water.

https://www.youtube.com/watch?v=ii11V201oFI

The main and auxiliary seawater cooling systems pull water off the vessel through hull valves to provide cooling water to heat exchangers. These valves are located sufficiently below the water line to prevent vapor locking the pumps.Key components to the main and auxiliary seawater systems are the main feed pumps, inductors, strainers, electro-hydraulic through hull valves, expansion tanks, pipping, heat exchangers, and any subsystems used to prevent internal pipe biological growth. Without main and auxiliary seawater cooling systems such as propulsion, power generation, and compressed air, a vessel would shortly shut down.

Wastewater

https://www.youtube.com/watch?v=5Z7bTmZVPTI

Greywater refers to wastewater generated from streams without fecal contamination, i.e., all streams except for the wastewater from toilets.

<u>Blackwater</u> in a sanitation context denotes wastewater from toilets which likely contains pathogens that may spread by the fecal-oral route. Blackwater can contain feces, urine, water and toilet paper from flush toilets.

10

Virtual Engine Room Labs (#1-3)

- SW Install
- Engine Startup
 - Checklists
 - Bunkering
 - Main Engine
- Electrical
 - Start/Stop
 - Failover
 - Synchronization
- Auxiliaries
 - o Ballast
 - Fire Fighting
 - Bilge
 - Cooling

https://drkluj.com/simulators/free-student-version/

Marine Systems Lectures - Bridge Systems

- Definitions
- Manning
- Components
 - ECDIS
 - AIS
 - Radar
 - Communications
 - Other Systems
- Automation

Manning

https://www.youtube.com/watch?v=xumcG8FvH7k

There is a stark difference between the number of personnel required on civilian and military bridge watch crews. Changes have reduced USN footprint in recent years.

ECDIS

An Electronic Chart Display and Information System (<u>ECDIS</u>) is a geographic information system used for nautical navigation that complies with International Maritime Organization (IMO) <u>regulations</u> V/19 & V/27 of SOLAS convention as amended, by displaying selected information from a System Electronic Navigational Chart (SENC).

Automatic Steering

ing

https://www.youtube.com/watch?v=3T-wFfPm37U

Innovation for hands-free steering for sailing vessels initially came from model ship competitions and was used during solo Transatlantic journeys in the 1930s.

Modern autopilot systems use electronic gyro inputs and have several modes of operation and follow a course entered in the integrated ECDIS system.

AIS

https://youtu.be/mRtBr-2Oqz0?t=30

The Automatic Identification System (AIS) is an automatic tracking system that uses transceivers on ships and is used by vessel traffic services (VTS). Information provided by AIS equipment, such as unique identification, position, course, and speed, is intended to assist a vessel's watchstanding officers and allow maritime authorities to track and monitor vessel movements.

Bridge Command Lab (#4)

https://www.bridgecommand.co.uk/

- SW Install
- Bouyage
 - RHIB
 - Basic Controls
- Leaving Harbor
 - Lifeboat
 - Radar
 - Man Overboard

PLC Lectures - Introduction to PLCs

- Overview
- History
- Components
- Applications
- SCADA
 Organization
- Programming

History

There are two men credited as being the "father" of the PLC.

- <u>Richard E. Morley</u> (1932-2017) was an American mechanical engineer who was involved with the production of the first PLC for General Motors, Modicon, and Bedford Associates in 1968.
- <u>Odo Josef Struger</u> (1931-1998) was involved in the invention of the Allen-Bradley
 programmable logic controller (PLC) and coined that term, during 1958 to 1960 based on a
 concept developed in his doctoral dissertation at the Vienna University of Technology.

Where they fit into a SCADA system

The Purdue model, part of the Purdue Enterprise Reference Architecture (PERA), was designed as a reference model for data flows in computer-integrated manufacturing (CIM), where a plant's processes are completely automated. It came to define the standard for building an ICS network architecture in a way that supports OT security, separating the layers of the network to maintain a hierarchical flow of data between them.

0

PLC Programming

What is inside a PLC?

Power Supply

Input Modules

Output Modules

Interface Modules

Programming Interface

Lattice LC4064V CPLD

Processor

•

Level 4/5

DMZ

Avago 10 MBaud HCPL-063L

Standardized with <u>IEC 61131-3</u> which defines three graphical and two textual programming language standards:

8

Toshiba TLP280-4

Input Output

Modules Modules

C165 series process

https://youtu.be/pP

PLC Lectures - Ladder Logic

- History
- Conventions • L to R, top to bot.
- Symbols
 - Contacts
 - Coils
- Function Blocks
 - Modbus Message
 - Timer
 - Num. Conversion
 - User Defined
- Examples

Where does LL come from?

Ladder logic was originally a written method to document the design and construction of relay racks as used in manufacturing and process control.^[1] Each device in the <u>relay</u> rack would be represented by a symbol on the ladder diagram with connections between those devices shown. In addition, other items external to the relay rack such as pumps, heaters, and so forth would also be shown on the ladder diagram.

 ge
 Typical Symbols

 NO Cartest
 Pastive Trensit

 Image: Contact
 Pastive Trensit

 DN
 NC Cartest
 Negetive Trensit

Negated Coil

(/)

Latch / Self Holding Circuit

PLC Labs (#7-11)

Allen-Bradley (AB) micro820 PLC based

Individual Ladder Logic Programming

Modbus Communication (RS-232, RS-485, and TCP)

Connected

Components

Workbench"

Software

PLC Lectures - PLC Communication

responses.

Function Codes

- Modbus History
- Intro
- **Object Types**
- Protocols
- Message Format
 - **Function Codes** \bigcirc
 - Data Format \bigcirc
 - CRC \cap
- **Physical Medium**
- Others
 - CIP \bigcirc
 - FtherNet/IP \cap
 - DNP3 \bigcirc
 - HART \cap
 - BACNet \bigcirc
 - OPC \bigcirc
 - Profinet 0

Philosophy of Modbus	Object type
	Coil
Every message in Modbus deals	Discrete input
with reading or writing one of only	Input register
tilese lour <u>object types</u> .	Holding register
Coils	
 Discrete Inputs 	Read/write
 Input Registers 	Modbus

Action

Read

Function

Code

01 (01 hex)

Access

Read-write

Read-only

Read-only

Size

1 bit

1 bit

Read-write 16 bits 40001 - 49999

Address Space

00001 - 09999

10001 - 19999

16 bits 30001 - 39999

Table Name

Discrete Output Coils

Each message sent from the
Master will use one and only
one of these codes to either
read or manipulate a particular

value in the Slave's memory tables.	(
If the slave needs to send back	0
an error code, they will change	(
during the reply.	

	05 (05 hex) Write single		Discrete Output Coil		
r k e	15 (0F hex)	Write multiple	Discrete Output Coils		
	02 (02 hex)	hex) Read Discrete Input Contac			
	04 (04 hex)	Read	Analog Input Registers		
	03 (03 hex)	Read	Analog Output Holding Registers		
	06 (06 hex) Write single		Analog Output Holding Register		
	16 (10 hex)	Write multiple	Analog Output Holding Registers		

https://www.youtube.com/watch?v=JBGaInI-TG4

EtherNet/IP (IP = Industrial Protocol) EtherNet/IP

PLC Lectures - Attacking and Defending PLC Networks

			Name	Classification
Industrial Control Sv	stem Cyber Attacks	1	Address Scan	Reconnaissance
	etern eyser / maierie	2	Function Code Scan	Reconnaissance
			Device Identification	Reconnaissance
			Naïve Read Payload Injection	NMRI
Thomas H. Mor	rie ¹ Wei Gao	5	Invalid Read Payload Size	NMRI
This paper presents a set of attacks against SCADA control systems. The attacks are grouped into ¹ morris@ece.msstate.edu This paper presents a set of attacks against SCADA control systems. The attacks are grouped into 4 classes; reconnaissance, response and measurement injection, command injection and denial of service. The 4 classes are defined and each attack is described in detail. The response and measurement injection and command injection classes are subdivided into sub-classes based on attack complexity. Each attack described in this paper has been exercised against industrial control systems in a laboratory setting. Industrial Control System. Threat Model. Taxonomy.			Naïve False Error Response	NMRI
			Sporadic Sensor Measurement Injection Attack	NMRI
			Slope Sensor Measurement Injection	CMRI
			High Slope Measurement Injection	CMRI
			High Frequency Measurement Injection	CMRI
			Altered System Control Scheme	MSCI
1. INTRODUCTION	functional SCADA control systems which model a gas pipeline and a water storage tank using commercial control system hardware and software.	12	Altered Actuator State	MSCI
		13	Altered Control Set Point	MPCI
Supervisory Control and Data Acquisition (SCADA)		14	Force Listen Only Mode	MFCI
systems are computer-based industrial control		15	Restart Communication	MFCI
https://www.scienceopen.co	m/hosted-	16	Invalid Cyclic Redundancy Code (CRC)	DOS
document?doi=10.14236/ewic/ICSCSR2013.3			MODBUS Slave Traffic Jamming	DOS

Table 1: List of Attacks against MODBUS Industrial Control Systems

Exams

Three exams, primarily short answer having the students recall material introduced in lectures. Example Questions:

- 1. What are some reasons why a ballast system is required on a ship?
- 2. What is an ECDIS and what is it used for on a ship?
- 3. Describe how the HART protocol can encode both digital and analog data on the same legacy wire.
- 4. Decode the following Modbus message and describe in plain english what it means: 0x13 0x06 0x00 0x04 0x00 0x06 0x4B 0x7B
- 5. Think about two different attacks that a knowledgeable cyber attacker could launch on a typical ship. Describe the method of ingress, systems affected, and consequences to the vessel.

Final Project

USNA Yard Patrol vessels (YP703)

- Builder: C&G Boat Works Inc. (YP703-2010 to YP708-2014)
- Propulsion: 2x715 bhp (2x448kw) Cat C-18 diesel engines at 2,100 RPM
- Electrical: 2x CAT Diesel Generators 480V, 99 KW, 3-phase AC
- Length: Overall: 119 feet (36.3 meters)
- Beam: 27.9 feet (8.51 meters)
- Displacement: 227.6 Metric Tonnes (223.9 long tons)
- Draft: 7.5 feet (2.27 meters)
- Speed: 12.6 knots (23.3 kilometers per hour)

Used for local ship-handling training operations and summer cruises on the eastern seaboard

MAX II Alarms and Monitoring System on the YP703 class

GE Fanuc based custom install

- 2x PC to drive 6x touchscreen Human Machine Interface (HMI)
- 2x Programmable Logic Controllers (PLCs)
- Dual redundant IP/serial communications
- Interfaces with:
 - Engines
 - Generators
 - o Tanks
 - Fire Detection

Project Results

https://github.com/ sdunlap-afit/hilics

Students successfully connected three PLC kits together to replicate a portion of the YP alarms system.

Modified the HILICS IO_Test program to share discrete and analog values and trigger alarms.

Produced a 9-page Interface Control Document (ICD) that recorded the message format and context for the information displayed and the displays.

2. Interface Description

2.1 System Overview

This system is meant to simulate a Yard Patrol Craft alarm apparatus and messaging system between a Control Panel, Engine, and a Generator. The system is made up of three separate PLCs and, via ladder logic, is coded on the RSLogix program. The simulated Generator and Engine are very similar in functionality; each have two analog inputs and three discrete inputs

Conclusion

An overview of the new Maritime ICS Course taught at USNA.

I look forward to hearing your **<u>questions</u>** and and suggestions you might have about ideas for future offerings.

Brien Croteau, USNA, croteau@usna.edu

Link to these slides: https://github.com/brienc23/ MICS_Course_Materials

Backup Slides

Lessons Learned when building a Maritime Systems Security Laboratory Testbench

Brien Croteau, USNA, Cyber Science DefCon 31- ICS Village, 12 Aug 2023

Link to these slides: https://github.com/brienc23/De fcon31_workshop_materials

v0.1 UMBC Ship System Testbed

2019 R Week Paper Alternative Actuation Paths for Ship Applications in the Presence of Cyber-Attacks

5 min demo video

v1.0 Proof of Concept

3x Ras Pi: HMI, PLC, "Generator"

- OpenPLC v1.0
- 8 discrete faults
- 1 "analog" frequency
- toggle on/off status

v2.0 Classroom Trainers

Allen-Bradley (AB) micro820 PLC based

Individual Ladder Logic Programming

Modbus Communication (RS-232, RS-485, and TCP)

Rockwell Automation

Connected Components Workbench[™] Software

v2.5 Hardware-in-the-Loop ICS (HILICS)

On loan from Air Force Institute of Technology (AFIT) AB microLogix 1100+RasPi

Students made a 3-node network replicating a portion of the YP703 system:

- 1x HMI
- 1x Diesel Engine
- 1x Generator

Captured their work in an Interface Control Document

https://github.com/ sdunlap-afit/hilics

Other Maritime Testbenches

